
Scaling up GANs for Text-to-Image Synthesis

Minguk Kang1,3 Jun-Yan Zhu2 Richard Zhang3

Jaesik Park1 Eli Shechtman3 Sylvain Paris3 Taesung Park3

1POSTECH 2Carnegie Mellon University 3Adobe Research

Abstract

The recent success of text-to-image synthesis has taken
the world by storm and captured the general public’s imag-
ination. From a technical standpoint, it also marked a dras-
tic change in the favored architecture to design generative
image models. GANs used to be the de facto choice, with
techniques like StyleGAN. With DALL·E 2, autoregressive
and diffusion models became the new standard for large-
scale generative models overnight. This rapid shift raises
a fundamental question: can we scale up GANs to benefit
from large datasets like LAION? We find that naı̈vely in-
creasing the capacity of the StyleGAN architecture quickly
becomes unstable. We introduce GigaGAN, a new GAN ar-
chitecture that far exceeds this limit, demonstrating GANs
as a viable option for text-to-image synthesis. GigaGAN
offers three major advantages. First, it is orders of mag-
nitude faster at inference time, taking only 0.13 seconds
to synthesize a 512px image. Second, it can synthesize
high-resolution images, for example, 16-megapixel images
in 3.66 seconds. Finally, GigaGAN supports various latent
space editing applications such as latent interpolation, style
mixing, and vector arithmetic operations.

1. Introduction

Recently released models, such as DALL·E 2 [74], Im-
agen [80], Parti [101], and Stable Diffusion [79], have
ushered in a new era of image generation, achieving un-
precedented levels of image quality and model flexibility.
The now-dominant paradigms, diffusion models and autore-
gressive models, both rely on iterative inference. This is
a double-edged sword, as iterative methods enable stable
training with simple objectives but incur a high computa-
tional cost during inference.

Contrast this with Generative Adversarial Networks
(GANs) [6,21,41,72], which generate images through a sin-
gle forward pass and thus inherently efficient. While such
models dominated the previous “era” of generative mod-
eling, scaling them requires careful tuning of the network

architectures and training considerations due to instabilities
in the training procedure. As such, GANs have excelled at
modeling single or multiple object classes, but scaling to
complex datasets, much less an open world, has remained
challenging. As a result, ultra-large models, data, and com-
pute resources are now dedicated to diffusion and autore-
gressive models. In this work, we ask – can GANs continue
to be scaled up and potentially benefit from such resources,
or have they plateaued? What prevents them from further
scaling, and can we overcome these barriers?

We first experiment with StyleGAN2 [42] and observe
that simply scaling the backbone causes unstable training.
We identify several key issues and propose techniques to
stabilize the training while increasing the model capacity.
First, we effectively scale the generator’s capacity by re-
taining a bank of filters and taking a sample-specific linear
combination. We also adapt several techniques commonly
used in the diffusion context and confirm that they bring
similar benefits to GANs. For instance, interleaving both
self-attention (image-only) and cross-attention (image-text)
with the convolutional layers improves performance.

Furthermore, we reintroduce multi-scale training, find-
ing a new scheme that improves image-text alignment and
low-frequency details of generated outputs. Multi-scale
training allows the GAN-based generator to use parameters
in low-resolution blocks more effectively, leading to better
image-text alignment and image quality. After careful tun-
ing, we achieve stable and scalable training of a one-billion-
parameter GAN (GigaGAN) on large-scale datasets, such as
LAION2B-en [88]. Our results are shown in Figure 1.

In addition, our method uses a multi-stage approach [14,
104]. We first generate at 64 × 64 and then upsample to
512 × 512. These two networks are modular and robust
enough to be used in a plug-and-play fashion. We show that
our text-conditioned GAN-based upsampling network can
be used as an efficient, higher-quality upsampler for a base
diffusion model such as DALL·E 2, despite never having
seen diffusion images at training time (Figures 2).

Together, these advances enable our GigaGAN to go
far beyond previous GANs: 36× larger than Style-

1

A golden luxury motorcycle parked at the
King's palace. 35mm f/4.5.

a cute magical flying maltipoo at light
speed, fantasy concept art, bokeh, wide sky

A portrait of a human growing colorful flowers from her hair. Hyperrealistic oil painting.
Intricate details.

A living room with a fireplace at
a wood cabin. Interior design.

a blue Porsche 356 parked in
front of a yellow brick wall.

Eiffel Tower, landscape
photography

A painting of a majestic royal
tall ship in Age of Discovery.

Isometric underwater Atlantis city
with a Greek temple in a bubble.

A hot air balloon in shape of a
heart. Grand Canyon

low poly bunny with cute eyes A cube made of denim on a wooden
table

Figure 1. Our model, GigaGAN, shows GAN frameworks can also be scaled up for general text-to-image synthesis tasks, generating a
512px output at an interactive speed of 0.13s, and 4096px at 3.7s. Selected examples at 2K or 4K resolutions are shown. Please zoom
in for more details. See Appendix C and our website for more uncurated comparisons.

2

https://mingukkang.github.io/GigaGAN/

Input artwork from AdobeStock (128px) GigaGAN Upsampler (1024px, 0.13s)Real-ESRGAN (1024px, 0.06s) SD Upscaler (1024px, 7.75s)

SD Upscaler (1K)

Input

GigaGAN Up (1K)

GigaGAN Up (4K)

Real-ESRGAN (1K)

GigaGAN Upsampler (4096px, 16Mpix, 3.66s)

Figure 2. Our GAN-based upsampler can serve in the upsampling pipeline of many text-to-image models that often generate initial
outputs at low resolutions like 64px or 128px. We simulate such usage by applying our text-conditioned 8× superresolution model on a
low-res 128px artwork to obtain the 1K output, using “Portrait of a colored iguana dressed in a hoodie”. Then our model can be re-applied to
go beyond 4K. We compare our model with the text-conditioned upscaler of Stable Diffusion [78] and unconditional Real-ESRGAN [33].
Zooming in is recommended for comparison between 1K and 4K.

3

SD Upscaler (1K)

Input

GigaGAN Up (1K)

GigaGAN Up (4K)

Real-ESRGAN (1K)

Input photo (128px) GigaGAN Upsampler (1024px, 0.13s)Real-ESRGAN (1024px, 0.06s) SD Upscaler (1024px, 7.75s)

GigaGAN Upsampler (4096px, 16Mpix, 3.66s)

Figure 3. Our GAN-based upsampler, similar to Figure 2, can also be used as an off-the-shelf superresolution model for real images
with a large scaling factor by providing an appropriate description of the image. We apply our text-conditioned 8× superresolution model
on a low-res 128px photo to obtain the 1K output, using “A dog sitting in front of a mini tipi tent”. Then our model can be re-applied to
go beyond 4K. We compare our model with the text-conditioned upscaler of Stable Diffusion [78] and unconditional Real-ESRGAN [33].
Zooming in is recommended for comparison between 1K and 4K.

4

GAN2 [42] and 6× larger than StyleGAN-XL [86] and
XMC-GAN [103]. While our 1B parameter count is still
lower than the largest recent synthesis models, such as Ima-
gen (3.0B), DALL·E 2 (5.5B), and Parti (20B), we have not
yet observed a quality saturation regarding the model size.
GigaGAN achieves a zero-shot FID of 9.09 on COCO2014
dataset, lower than the FID of DALL·E 2, Parti-750M, and
Stable Diffusion.

Furthermore, GigaGAN has three major practical ad-
vantages compared to diffusion and autoregressive models.
First, it is orders of magnitude faster, generating a 512px
image in 0.13 seconds (Figure 1). Second, it can synthe-
size ultra high-res images at 4k resolution in 3.66 seconds.
Third, it is endowed with a controllable, latent vector space
that lends itself to well-studied controllable image synthesis
applications, such as style mixing (Figure 6), prompt inter-
polation (Figure 7), and prompt mixing (Figure 8).

In summary, our model is the first GAN-based method
that successfully trains a billion-scale model on billions
of real-world complex Internet images. This suggests that
GANs are still a viable option for text-to-image synthe-
sis and should be considered for future aggressive scaling.
Please visit our website for additional results.

2. Related Works

Text-to-image synthesis. Generating a realistic image
given a text description, explored by early works [58,
113], is a challenging task. A common approach is text-
conditional GANs [76, 77, 93, 99, 104, 111] on specific
domains [96] and datasets with a closed-world assump-
tion [54]. With the development of diffusion models [15,
26], autoregressive (AR) transformers [12], and large-scale
language encoders [71, 73], text-to-image synthesis has
shown remarkable improvement on an open-world of ar-
bitrary text descriptions. GLIDE [63], DALL·E 2 [74],
and Imagen [80] are representative diffusion models that
show photorealistic outputs with the aid of a pretrained lan-
guage encoder [71, 73]. AR models, such as DALL·E [75],
Make-A-Scene [20], CogView [16, 17], and Parti [101]
also achieve amazing results. While these models exhibit
unprecedented image synthesis ability, they require time-
consuming iterative processes to achieve high-quality im-
age sampling.

To accelerate the sampling, several methods propose
to reduce the sampling steps [57, 59, 83, 89] or reuse
pre-computed features [51]. Latent Diffusion Model
(LDM) [79] performs the reverse processes in low-
dimensional latent space instead of pixel space. How-
ever, consecutive reverse processes are still computationally
expensive, limiting the usage of large-scale text-to-image
models for interactive applications.

GAN-based image synthesis. GANs [21] have been one
of the primary families of generative models for natural im-
age synthesis. As the sampling quality and diversity of
GANs improve [39–42, 44, 72, 84], GANs have been de-
ployed to various computer vision and graphics applica-
tions, such as text-to-image synthesis [76], image-to-image
translation [29, 34, 49, 65, 66, 110], and image editing [1,
7, 69, 109]. Notably, StyleGAN-family models [40, 42]
have shown impressive ability in image synthesis tasks for
single-category domains [1, 31, 69, 98, 112]. Other works
have explored class-conditional GANs [6, 36, 86, 102, 107]
on datasets with a fixed set of object categories.

In this paper, we change the data regimes from single- or
multi-categories datasets to extremely data-rich situations.
We make the first expedition toward training a large-scale
GAN for text-to-image generation on a vast amount of web-
crawled text and image pairs, such as LAION2B-en [88]
and COYO-700M [8]. Existing GAN-based text-to-image
synthesis models [52, 76, 93, 99, 103, 104, 111] are trained
on relatively small datasets, such as CUB-200 (12k train-
ing pairs), MSCOCO (82k) and LN-OpenImages (507k).
Also, those models are evaluated on associated validation
datasets, which have not been validated to perform large-
scale text-image synthesis like diffusion or AR models.

Concurrent with our method, StyleGAN-T [85] and
GALIP [92] share similar goals and make complementary
insights to ours.

Super-resolution for large-scale text-to-image models.
Large-scale models require prohibitive computational costs
for both training and inference. To reduce the memory and
running time, cutting-edge text-to-image models [63,74,80,
101] have adopted cascaded generation processes where im-
ages are first generated at 64×64 resolution and upsampled
to 256 × 256 and 1024 × 1024 sequentially. However, the
super-resolution networks are primarily based on diffusion
models, which require many iterations. In contrast, our low-
res image generators and upsamplers are based on GANs,
reducing the computational costs for both stages. Unlike
traditional super-resolution techniques [2, 18, 47, 95] that
aim to faithfully reproduce low-resolution inputs or handle
image degradation like compression artifacts, our upsam-
plers for large-scale models serve a different purpose. They
need to perform larger upsampling factors while potentially
leveraging the input text prompt.

3. Method
We train a generator G(z, c) to predict an image x ∈

RH×W×3 given a latent code z ∼ N (0, 1) ∈ R128 and
text-conditioning signal c. We use a discriminator D(x, c)
to judge the realism of the generated image, as compared
to a sample from the training database D, which contains
image-text pairs.

5

https://mingukkang.github.io/GigaGAN/

Latent code
𝑧~𝑁(0,1) 𝑤

Pretrained
text encoder

CLIP

Sample-adaptive kernel selection

”an oil
painting of a

corgi”

Learned
text encoder

Our high-capacity text-to-image generator

𝑀

Text 𝑐

𝑡!"#$!

𝑡%!"&$!
𝑇 w

Filter Bank Selected Filter

Filter Selection Modulation

Affine

Modulated
weights

Affine

Softmax

Weighted
-Avg

𝐺"Constant

Convolutional
Self-attention
Cross-attention

Figure 4. Our GigaGAN high-capacity text-to-image generator. First, we extract text embeddings using a pretrained CLIP model and a
learned encoder T . The local text descriptors are fed to the generator using cross-attention. The global text descriptor, along with a latent
code z, is fed to a style mapping networkM to produce style code w. The style code modulates the main generator using our style-adaptive
kernel selection, shown on the right. The generator outputs an image pyramid by converting the intermediate features into RGB images. To
achieve higher capacity, we use multiple attention and convolution layers at each scale (Appendix A2). We also use a separate upsampler
model, which is not shown in this diagram.

Although GANs [6, 39, 41] can successfully generate re-
alistic images on single- and multi-category datasets [13,
41, 100], open-ended text-conditioned synthesis on Internet
images remains challenging. We hypothesize that the cur-
rent limitation stems from its reliance on convolutional lay-
ers. That is, the same convolution filters are challenged to
model the general image synthesis function for all text con-
ditioning across all locations of the image. In this light, we
seek to inject more expressivity into our parameterization
by dynamically selecting convolution filters based on the
input conditioning and by capturing long-range dependence
via the attention mechanism.

Below, we discuss our key contributions to making Con-
vNets more expressive (Section 3.1), followed by our de-
signs for the generator (Section 3.2) and discriminator (Sec-
tion 3.3). Lastly, we introduce a new, fast GAN-based up-
sampler model that can improve the inference quality and
speed of our method and diffusion models such as Ima-
gen [80] and DALL·E 2 [74].

3.1. Modeling complex contextual interaction

Baseline StyleGAN generator. We base our architecture
off the conditional version of StyleGAN2 [42], comprised
of two networks G = G̃ ◦ M . The mapping network
w = M(z, c) maps the inputs into a “style” vector w,
which modulates a series of upsampling convolutional lay-
ers in the synthesis network G̃(w) to map a learned constant
tensor to an output image x. Convolution is the main engine
to generate all output pixels, with the w vector as the only
source of information to model conditioning.

Sample-adaptive kernel selection. To handle the highly
diverse distribution of internet images, we aim to increase
the capacity of convolution kernels. However, increasing
the width of the convolution layers becomes too demanding,
as the same operation is repeated across all locations.

We propose an efficient way to enhance the expressivity
of convolutional kernels by creating them on-the-fly based
on the text conditioning, as illustrated in Figure 4 (right).
In this scheme, we instantiate a bank of N filters {Ki ∈
RCin×Cout×K×K}Ni=1, instead of one, that takes a feature f ∈
RCin at each layer. The style vector w ∈ Rd then goes
through an affine layer [Wfilter, bfilter] ∈ R(d+1)×N to predict
a set of weights to average across the filters, to produce an
aggregated filter K ∈ RCin×Cout×K×K .

K =

N∑
i=1

Ki · softmax
(
W⊤

filterw + bfilter
)
i

(1)

The filter is then used in the regular convolution pipeline
of StyleGAN2, with the second affine layer [Wmod, bmod] ∈
R(d+1)×Cin for weight (de-)modulation [42].

gadaconv(f ,w) =
(
(W⊤

modw + bmod
)
⊗K) ∗ f , (2)

where ⊗ and ∗ represent (de-)modulation and convolution.
At a high level, the softmax-based weighting can be

viewed as a differentiable filter selection process based on
input conditioning. Furthermore, since the filter selection
process is performed only once at each layer, the selection
process is much faster than the actual convolution, decou-
pling compute complexity from the resolution. Our method

6

shares a spirit with dynamic convolutions [23, 35, 91, 97] in
that the convolution filters dynamically change per sample,
but differs in that we explicitly instantiate a larger filter bank
and select weights based on a separate pathway conditional
on the w-space of StyleGAN.

Interleaving attention with convolution. Since the con-
volutional filter operates within its receptive field, it can-
not contextualize itself in relationship to distant parts of
the images. One way to incorporate such long-range re-
lationships is using attention layers gattention. While recent
diffusion-based models [15,27,79] have commonly adopted
attention mechanisms, StyleGAN architectures are predom-
inantly convolutional with the notable exceptions such as
BigGAN [6], GANformer [30], and ViTGAN [50].

We aim to improve the performance of StyleGAN by in-
tegrating attention layers with the convolutional backbone.
However, simply adding attention layers to StyleGAN of-
ten results in training collapse, possibly because the dot-
product self-attention is not Lipschitz, as pointed out by
Kim et al. [43]. As the Lipschitz continuity of discrimi-
nators has played a critical role in stable training [3,22,60],
we use the L2-distance instead of the dot product as the at-
tention logits to promote Lipschitz continuity [43], similar
to ViTGAN [50].

To further improve performance, we find it crucial to
match the architectural details of StyleGAN, such as equal-
ized learning rate [39] and weight initialization from a unit
normal distribution. We scale down the L2 distance logits
to roughly match the unit normal distribution at initializa-
tion and reduce the residual gain from the attention layers.
We further improve stability by tying the key and query ma-
trix [50], and applying weight decay.

In the synthesis network G̃, the attention layers are inter-
leaved with each convolutional block, leveraging the style
vector w as an additional token. At each attention block,
we add a separate cross-attention mechanism gcross-attention
to attend to individual word embeddings [4]. We use each
input feature tensor as the query, and the text embeddings
as the key and value of the attention mechanism.

3.2. Generator design

Text and latent-code conditioning. First, we extract the
text embedding from the prompt. Previous works [75, 80]
have shown that leveraging a strong language model is es-
sential for producing strong results. To do so, we tokenize
the input prompt (after padding it to C = 77 words, follow-
ing best practices [75, 80]) to produce conditioning vector
c ∈ RC×768, and take the features from the penultimate
layer [80] of a frozen CLIP feature extractor [71]. To allow
for additional flexibility, we apply additional attention lay-
ers T on top to process the word embeddings before pass-
ing them to the MLP-based mapping network. This results

in text embedding t = T (Etxt(c)) ∈ RC×768. Each com-
ponent ti of t captures the embedding of the ith word in
the sentence. We refer to them as tlocal = t{1:C}\EOT ∈
R(C−1)×768. The EOT (“end of text”) component of t ag-
gregates global information, and is called tglobal ∈ R768.
We process this global text descriptor, along with the latent
code z ∼ N (0, 1), via an MLP mapping network to extract
the style w =M(z, tglobal).

(tlocal, tglobal) = T (Etxt(c)),

w =M(z, tglobal).
(3)

Different from the original StyleGAN, we use both the text-
based style code w to modulate the synthesis network G̃ and
the word embeddings tlocal as features for cross-attention.

x = G̃(w, tlocal). (4)

Similar to earlier works [58,74,80], the text-image align-
ment visually improves with cross-attention.

Synthesis network. Our synthesis network consists of a
series of upsampling convolutional layers, with each layer
enhanced with the adaptive kernel selection (Equation 1)
and followed by our attention layers.

fℓ+1 = gℓxa(g
ℓ
attn(g

ℓ
adaconv(fℓ,w),w), tlocal), (5)

where gℓxa, gℓattn, and gℓadaconv denote the l-th layer of cross-
attention, self-attention, and weight (de-)modulation layers.
We find it beneficial to increase the depth of the network by
adding more blocks at each layer. In addition, our genera-
tor outputs a multi-scale image pyramid with L = 5 levels,
instead of a single image at the highest resolution, simi-
lar to MSG-GAN [38] and AnycostGAN [53]. We refer
to the pyramid as {xi}L−1

i=0 = {x0,x1, ...,x4}, with spa-
tial resolutions {Si}L−1

i=0 = {64, 32, 16, 8, 4}, respectively.
The base level x0 is the output image x. Each image of
the pyramid is independently used to compute the GAN
loss, as discussed in Section 3.3. We follow the findings of
StyleGAN-XL [86] and turn off the style mixing and path
length regularization [42]. We include more training details
in Appendix A.1.

3.3. Discriminator design

As shown in Figure 5, our discriminator consists of sep-
arate branches for processing text with the function tD and
images with function ϕ. The prediction of real vs. fake
is made by comparing the features from the two branches
using function ψ. We introduce a new way of making pre-
dictions on multiple scales. Finally, we use additional CLIP
and Vision-Aided GAN losses [44] to improve stability.

7

𝑡!

Sweep through multi-scale input

R/F R/F R/FR/F R/F

𝜙

Convolutional
Self-attention

𝑥"

𝜓#

Text conditioning

Multi-scale output

Figure 5. Our discriminator consists of two branches for pro-
cessing the image and the text conditioning tD . The text branch
processes the text similar to the generator (Figure 4). The image
branch receives an image pyramid and makes independent predic-
tions for each image scale. Moreover, the predictions are made
at all subsequent scales of the downsampling layers, making it a
multi-scale input, multi-scale output (MS-I/O) discriminator.

Text conditioning. First, to incorporate conditioning into
discriminators, we extract text descriptor tD from text c.
Similar to the generator, we apply a pretrained text encoder,
such as CLIP [71], followed by a few learnable attention
layers. In this case, we only use the global descriptor.

Multiscale image processing. We observe that the early,
low-resolution layers of the generator become inactive,
using small dynamic ranges irrespective of the provided
prompts. StyleGAN2 [42] also observes this phenomenon,
concluding that the network relies on the high-resolution
layers, as the model size increases. As recovering perfor-
mance in low frequencies, which contains complex struc-
ture information, is crucial, we redesign the model architec-
ture to provide training signals across multiple scales.

Recall the generator produces a pyramid {xi}L−1
i=0 , with

the full image x0 at the pyramid base. MSG-GAN [38] im-
proves performance by making a prediction on the entire
pyramid at once, enforcing consistency across scales. How-
ever, in our large-scale setting, this harms stability, as this
limits the generator from making adjustments to its initial
low-res output.

Instead, we process each level of the pyramid indepen-
dently. As shown in Figure 5, each level xi makes a
real/fake prediction at multiple scales i < j ≤ L. For exam-
ple, the full x0 makes predictions at L = 5 scales, the next
level x1 makes predictions at 4 scales, and so on. In total,
our discriminator produces L(L+1)

2 predictions, supervising
multi-scale generations at multiple scales.

To extract features at different scales, we define feature

extractor ϕi→j : RXi×Xi×3 → RXD
j ×XD

j ×Cj . Practically,
each sub-network ϕi→j is a subset of full ϕ ≜ ϕ0→L, with
i > 0 indicating late entry and j < L indicating early exit.
Each layer in ϕ is composed of self-attention, followed by
convolution with stride 2. The final layer flattens the spatial
extent into a 1 × 1 tensor. This produces output resolu-
tions at {XD

j } = {32, 16, 8, 4, 1}. This allows us to inject
lower-resolution images on the pyramid into intermediate
layers [39]. As we use a shared feature extractor across dif-
ferent levels and most of the added predictions are made
at low resolutions, the increased computation overhead is
manageable.

Multi-scale input, multi-scale output adversarial loss.
In total, our training objective consists of discriminator
losses, along with our proposed matching loss, to encour-
age the discriminator to take into account the conditioning:

VMS-I/O(G,D) =

L−1∑
i=0

L∑
j=i+1

VGAN(Gi, Dij) + Vmatch(Gi, Dij),

(6)

where VGAN is the standard, non-saturating GAN loss [21].
To compute the discriminator output, we train predictor ψ,
which uses text feature tD to modulate image features ϕ(x):

Dij(x, c) = ψj(ϕi→j(xi), tD) + Conv1×1(ϕi→j(xi)),
(7)

where ψj is implemented as a 4-layer 1× 1 modulated con-
volution, and Conv1×1 is added as a skip connection to ex-
plicitly maintain an unconditional prediction branch [62].

Matching-aware loss. The previous GAN terms measure
how closely the image x matches the conditioning c, as well
as how realistic x looks, irrespective of conditioning. How-
ever, during early training, when artifacts are obvious, the
discriminator heavily relies on making a decision indepen-
dent of conditioning and hesitates to account for the condi-
tioning.

To enforce the discriminator to incorporate conditioning,
we match x with a random, independently sampled condi-
tion ĉ, and present them as a fake pair:

Vmatch = Ex,c,ĉ

[
log(1 + exp(D(x, ĉ)))

+ log(1 + exp(D(G(c), ĉ))
]
,

(8)

where (x, c) and ĉ are separately sampled from pdata. This
loss has previously been explored in text-to-image GAN
works [76,104], except we find that enforcing the Matching-
aware loss on generated images fromG, as well real images
x, leads to clear gains in performance (Table 1).

8

CLIP contrastive loss. We further leverage off-the-shelf
pretrained models as a loss function [44, 84, 90]. In par-
ticular, we enforce the generator to produce outputs that
are identifiable by the pre-trained CLIP image and text en-
coders [71], Eimg and Etxt, in the contrastive cross-entropy
loss that was used to train them originally.

LCLIP = E{cn}

[
− log

exp(Eimg(G(c0))
⊤Etxt(c0))∑

n exp(Eimg(G(c0))⊤Etxt(cn)
)
]
,

(9)

where {cn} = {c0, . . . } are sampled captions from the
training data.

Vision-aided adversarial loss. Lastly, we build an addi-
tional discriminator that uses the CLIP model as a back-
bone, known as Vision-Aided GAN [44]. We freeze the
CLIP image encoder, extract features from the intermedi-
ate layers, and process them through a simple network with
3 × 3 conv layers to make real/fake predictions. We also
incorporate conditioning through modulation, as in Equa-
tion 7. To stabilize training, we also add a fixed random
projection layer, as proposed by Projected GAN [84]. We
refer to this as LVision(G) (omitting the learnable discrimi-
nator parameters for clarity).

Our final objective is V(G,D) = VMS-I/O(G,D) +
LCLIP(G) + LVision(G), with weighting between the terms
specified in Table A2.

3.4. GAN-based upsampler
Furthermore, GigaGAN framework can be easily ex-

tended to train a text-conditioned superresolution model,
capable of upsampling the outputs of the base GigaGAN
generator to obtain high-resolution images at 512px or 2k
resolution. By training our pipeline in two separate stages,
we can afford a higher capacity 64px base model within the
same computational resources.

In the upsampler, the synthesis network is rearranged
to an asymmetric U-Net architecture, which processes the
64px input through 3 downsampling residual blocks, fol-
lowed by 6 upsampling residual blocks with attention layers
to produce the 512px image. There exist skip connections
at the same resolution, similar to CoModGAN [106]. The
model is trained with the same losses as the base model, as
well as the LPIPS Perceptual Loss [105] with respect to the
ground truth high-resolution image. Vision-aided GAN is
not used for the upsampler. During training and inference
time, we apply moderate Gaussian noise augmentation to
reduce the gap between real and GAN-generated images.
Please refer to Appendix A.3 for more details.

Our GigaGAN framework becomes particularly effective
for the superresolution task compared to the diffusion-based
models, which cannot afford as many sampling steps as the

base model at high resolution. The LPIPS regression loss
also provides a stable learning signal. We believe that our
GAN upsampler can serve as a drop-in replacement for the
superresolution stage of other generative models.

4. Experiments
Systematic, controlled evaluation of large-scale text-to-

image synthesis tasks is difficult, as most existing mod-
els are not publicly available. Training a new model from
scratch would be prohibitively costly, even if the train-
ing code were available. Still, we compare our model
to recent text-to-image models, such as Imagen [80], La-
tent Diffusion Models (LDM) [79], Stable Diffusion [78],
and Parti [101], based on the available information, while
acknowledging considerable differences in the training
dataset, number of iterations, batch size, and model size.
In addition to text-to-image results, we evaluate our model
on ImageNet class-conditional generation in Appendix B,
for an apples-to-apples comparison with other methods at a
more controlled setting.

For quantitative evaluation, we mainly use the Fréchet
Inception Distance (FID) [25] for measuring the realism of
the output distribution and the CLIP score for evaluating the
image-text alignment.

We conduct five different experiments. First, we show
the effectiveness of our method by gradually incorporating
each technical component one by one (Section 4.2). Sec-
ond, our text-to-image synthesis results demonstrate that
GigaGAN exhibits comparable FID with Stable Diffusion
(SD-v1.5) [79] while generating results hundreds of times
faster than diffusion or autoregressive models (Section 4.3).
Third, we compare GigaGAN with a distillation-based dif-
fusion model [59] and show that GigaGAN can synthe-
size higher-quality images faster than the distillation-based
diffusion model. Fourth, we verify the advantage of Gi-
gaGAN’s upsampler over other upsamplers in both condi-
tional and unconditional super-resolution tasks. Lastly, we
show our large-scale GANs still enjoy the continuous and
disentangled latent space manipulation of GANs, enabling
new image editing modes (Section 4.6).

4.1. Training and evaluation details
We implement GigaGAN based on the StudioGAN Py-

Torch library [37], following the standard FID evaluation
protocol with the anti-aliasing bicubic resize function [67],
unless otherwise noted. For text-to-image synthesis, we
train our models on the union of LAION2B-en [88] and
COYO-700M [8] datasets, with the exception of the 128-to-
1024 upsampler model trained on Adobe’s internal Stock
images. The image-text pairs are preprocessed based on
CLIP score [24], image resolution, and aesthetic score [87],
similar to prior work [78]. We use CLIP ViT-L/14 [71] for
the pre-trained text encoder and OpenCLIP ViT-G/14 [32]

9

“A Toy sport
sedan, CG
art.”

Coarse styles

Fi
ne

 s
ty

le
s

Figure 6. Style mixing. Our GAN-based architecture retains a disentangled latent space, enabling us to blend the coarse style of one
sample with the fine style of another. All outputs are generated with the prompt “A Toy sport sedan, CG art.” The corresponding latent
codes are spliced together to produce a style-swapping grid.

“.. in a
sunny day”

“.. in sunset”

“A modern mansion ..” “A victorian mansion ..”

Figure 7. Prompt interpolation. GigaGAN enables smooth interpolation between prompts, as shown in the interpolation grid. The four
corners are generated from the same latent z but with different text prompts. The corresponding text embeddings t and style vectors w are
interpolated to create a smooth transition. The same z results in similar layouts. See Figure 8 for more precise control.

10

“crochet” “fur” “denim” “brick”

“a cube
on tabletop”

“a ball
on tabletop”

“a teddy bear
on tabletop”

“a teddy bear
on tabletop”

no mixing

Figure 8. Prompt mixing. GigaGAN retains a disentangled latent space, enabling us to combine the coarse style of one sample with
the fine style of another. Moreover, GigaGAN can directly control the style with text prompts. Here we generate four outputs using the
prompts “a X on tabletop”, shown in the “no mixing” column. Then we re-compute the text embeddings t and the style codes w using
the new prompts “a X with the texture of Y on tabletop”, such as “a cube with the texture of crochet on tabletop”, and apply them to the
second half layers of the generator, achieving layout-preserving fine style control. Cross-attention mechanism automatically localizes the
style to the object of interest.

for CLIP score calculation [24] except for Table 1. All our
models are trained and evaluated on A100 GPUs. We in-
clude more training and evaluation details in Appendix A.

4.2. Effectiveness of proposed components

First, we show the effectiveness of our formulation via
ablation study in Table 1. We set up a baseline by adding
text-conditioning to StyleGAN2 and tuning the configura-
tion based on the findings of StyleGAN-XL. We first di-
rectly increase the model size of this baseline, but we find
that this does not improve the FID and CLIP scores. Then,
we add our components one by one and observe that they
consistently improve performance. In particular, our model
is more scalable, as the higher-capacity version of the final
formulation achieves better performance.

4.3. Text-to-Image synthesis

We proceed to train a larger model by increasing the
capacity of the base generator and upsampler to 652.5M
and 359.1M, respectively. This results in an unprece-
dented size of GAN model, with a total parameter count
of 1.0B. Table 2 compares the performance of our end-
to-end pipeline to various text-to-image generative mod-
els [5, 10, 63, 74, 75, 78–80, 101, 108]. Note that there exist
differences in the training dataset, the pretrained text en-
coders, and even image resolutions. For example, Giga-
GAN initially synthesizes 512px images, which are resized
to 256px before evaluation.

Table 2 shows that GigaGAN exhibits a lower FID
than DALL·E 2 [74], Stable Diffusion [78], and Parti-
750M [101]. While our model can be optimized to better
match the feature distribution of real images than existing

11

Table 1. Ablation study on 64px text-to-image synthesis. To
evaluate the effectiveness of our components, we start with a mod-
ified version of StyleGAN for text conditioning. While increasing
the network width does not show satisfactory improvement, each
addition of our contributions keeps improving metrics. Finally, we
increase the network width and scale up training to reach our final
model. All ablated models are trained for 100k steps at a batch size
of 256 except for the Scale-up row (1350k iterations with a larger
batch size). CLIP Score is computed using CLIP ViT-B/32 [71].

Model FID-10k ↓ CLIP Score ↑ # Param.

StyleGAN2 29.91 0.222 27.8M
+ Larger (5.7×) 34.07 0.223 158.9M

+ Tuned 28.11 0.228 26.2M
+ Attention 23.87 0.235 59.0M

+ Matching-aware D 27.29 0.250 59.0M
+ Matching-aware G and D 21.66 0.254 59.0M
+ Adaptive convolution 19.97 0.261 80.2M
+ Deeper 19.18 0.263 161.9M
+ CLIP loss 14.88 0.280 161.9M
+ Multi-scale training 14.92 0.300 164.0M
+ Vision-aided GAN 13.67 0.287 164.0M

+ Scale-up (GigaGAN) 9.18 0.307 652.5M

Table 2. Comparison to recent text-to-image models. Model
size, total images seen during training, COCO FID-30k, and in-
ference speed of text-image models. ∗ denotes that the model
has been evaluated by us. GigaGAN achieves a lower FID than
DALL·E 2 [74], Stable Diffusion [78], and Parti-750M [101],
while being much faster than competitive methods. GigaGAN and
SD-v1.5 require 4,783 and 6,250 A100 GPU days, and Imagen and
Parti need approximately 4,755 and 320 TPUv4 days for training.

Model Type # Param. # Images FID-30k ↓ Inf. time

25
6

GLIDE [63] Diff 5.0B 5.94B 12.24 15.0s
LDM [79] Diff 1.5B 0.27B 12.63 9.4s
DALL·E 2 [74] Diff 5.5B 5.63B 10.39 -
Imagen [80] Diff 3.0B 15.36B 7.27 9.1s
eDiff-I [5] Diff 9.1B 11.47B 6.95 32.0s
DALL·E [75] AR 12.0B 1.54B 27.50 -
Parti-750M [101] AR 750M 3.69B 10.71 -
Parti-3B [101] AR 3.0B 3.69B 8.10 6.4s
Parti-20B [101] AR 20.0B 3.69B 7.23 -
LAFITE [108] GAN 75M - 26.94 0.02s

51
2

SD-v1.5∗ [78] Diff 0.9B 3.16B 9.62 2.9s
Muse-3B [10] AR 3.0B 0.51B 7.88 1.3s
GigaGAN GAN 1.0B 0.98B 9.09 0.13s

models, the quality of the generated images is not necessar-
ily better (see Appendix C for more samples). We acknowl-
edge that this may represent a corner case of zero-shot FID
on COCO2014 dataset and suggest that further research on
a better evaluation metric is necessary to improve text-to-
image models. Nonetheless, we emphasize that GigaGAN
is the first GAN model capable of synthesizing promising
images from arbitrary text prompts and exhibits competi-
tive zero-shot FID with other text-to-image models.

4.4. Comparison with distilled diffusion models

While GigaGAN is at least 20 times faster than the
above diffusion models, there have been efforts to improve

Table 3. Comparison to distilled diffusion models shows that
GigaGAN achieves better FID and CLIP scores compared to the
progressively distilled diffusion models [59] for fast inference. As
GigaGAN generates outputs in a single feedforward pass, the in-
ference speed is still faster. The evaluation setup is different from
Table 2 to match SD-distilled’s protocol [59].

Model Steps FID-5k ↓ CLIP ↑ Inf. time

SD-distilled-2 [59] 2 37.3 0.27 0.23s
SD-distilled-4 [59] 4 26.0 0.30 0.33s
SD-distilled-8 [59] 8 26.9 0.30 0.52s
SD-distilled-16 [59] 16 28.8 0.30 0.88s

GigaGAN 1 21.1 0.32 0.13s

Table 4. Text-conditioned 128→1024 super-resolution on ran-
dom 10K LAION samples, compared against unconditional Real-
ESRGAN [33] and Stable Diffusion Upscaler [78]. GigaGAN en-
joys the fast speed of a GAN-based model while achieving better
FID, patch-FID [9], CLIP score, and LPIPS [105].

Model # Param. Inf. time FID-10k ↓ pFID ↓ CLIP ↑ LPIPS↓

Real-ESRGAN [33] 17M 0.06s 8.60 22.8 0.314 0.363
SD Upscaler [78] 846M 7.75s 9.39 41.3 0.316 0.523

GigaGAN 693M 0.13s 1.54 8.90 0.322 0.274

Table 5. Unconditional 64→256 super-resolution on ImageNet.
We compare to a simple U-Net trained with a pixel regression loss
(U-Net regression), and diffusion-based methods (SR3 [81] and
LDM [79]. Our method achieves higher realism scores represented
by the Inception Score (IS) and FID.

Model # Param. Steps IS ↑ FID-50k ↓ PSNR ↑ SSIM ↑

U-Net regression [81] 625M 1 121.1 15.2 27.9 0.80
SR3 [81] 625M 100 180.1 5.2 26.4 0.76
LDM-4 [79] 169M 100 166.3 2.8 24.4 0.69
emphLDM-4 [79] 552M 100 174.9 2.4 24.7 0.71
LDM-4-G [79] 183M 50 153.7 4.4 25.8 0.74

GigaGAN 359M 1 191.5 1.2 24.3 0.71

the inference speed of diffusion models. We compare Gi-
gaGAN with progressively distilled Stable Diffusion (SD-
distilled) [59]. Table 3 demonstrates that GigaGAN remains
faster than the distilled Stable Diffusion while showing bet-
ter FID and CLIP scores of 21.1 and 0.32, respectively.
We follow the evaluation protocol of SD-distilled [59] and
report FID and CLIP scores on COCO2017 dataset [54],
where images are resized to 512px.

4.5. Super-resolution for large-scale image synthesis
We separately evaluate the performance of the GigaGAN

upsampler. Our evaluation consists of two parts. First,
we compare GigaGAN with several commonly-used up-
samplers. For the text-conditioned upsampling task, we
combine the Stable Diffusion [78] 4x Upscaler and 2x La-
tent Upscaler to establish an 8x upscaling model (SD Up-
scaler). We also use the unconditional Real-ESRGAN [33]
as another baseline. Table 4 measures the performance of
the upsampler on random 10K images from the LAION
dataset and shows that our GigaGAN upsampler signifi-

12

Figure 9. Failure cases. Our outputs with the same prompts as
DALL·E 2. Each column conditions on “a teddy bear on a skate-
board in Times Square”, “a Vibrant portrait painting of Salvador
Dali with a robotic half face”, and “A close up of a handpalm with
leaves growing from it”. Compared to production-grade models
such as DALL·E 2, our model exhibits limitations in realism and
compositionality. See Appendix C for uncurated comparisons.

cantly outperforms the other upsamplers in realism scores
(FID and patch-FID [9]), text alignment (CLIP score) and
closeness to the ground truth (LPIPS [105]). In addition,
for more controlled comparison, we train our model on
the ImageNet unconditional superresolution task and com-
pare performance with the diffusion-based models, includ-
ing SR3 [81] and LDM [79]. As shown in Table 5, Gi-
gaGAN achieves the best IS and FID scores with a single
feedforward pass.

4.6. Controllable image synthesis
StyleGANs are known to possess a linear latent space

useful for image manipulation, called the W-space. Like-
wise, we perform coarse and fine-grained style swapping
using style vectors w. Similar to the W-space of Style-
GAN, Figure 6 illustrates that GigaGAN maintains a disen-
tangled W-space, suggesting existing latent manipulation
techniques of StyleGAN can transfer to GigaGAN. Further-
more, our model possesses another latent space of text em-
bedding t = [tlocal, tglobal] prior to W , and we explore its
potential for image synthesis. In Figure 8, we show that
the disentangled style manipulation can be controlled via
text inputs. In detail, we can compute the text embedding
t and style code w using different prompts and apply them
to different layers of the generator. This way, we gain not
only the coarse and fine style disentanglement but also an
intuitive prompt-based maneuver in the style space.

5. Discussion and Limitations
Our experiments provide a conclusive answer about the

scalability of GANs: our new architecture can scale up to
model sizes that enable text-to-image synthesis. However,
the visual quality of our results is not yet comparable to
production-grade models like DALL·E 2. Figure 9 shows

several instances where our method fails to produce high-
quality results when compared to DALL·E 2, in terms of
photorealism and text-to-image alignment for the same in-
put prompts used in their paper.

Nevertheless, we have tested capacities well beyond
what is possible with a naı̈ve approach and achieved com-
petitive results with autoregressive and diffusion models
trained with similar resources while being orders of magni-
tude faster and enabling latent interpolation and stylization.
Our GigaGAN architecture opens up a whole new design
space for large-scale generative models and brings back key
editing capabilities that became challenging with the tran-
sition to autoregressive and diffusion models. We expect
our performance to improve with larger models, as seen in
Table 1.

Acknowledgments. We thank Simon Niklaus, Alexandru
Chiculita, and Markus Woodson for building the distributed
training pipeline. We thank Nupur Kumari, Gaurav Parmar,
Bill Peebles, Phillip Isola, Alyosha Efros, and Joonghyuk
Shin for their helpful comments. We also want to thank
Chenlin Meng, Chitwan Saharia, and Jiahui Yu for answer-
ing many questions about their fantastic work. We thank
Kevin Duarte for discussions regarding upsampling beyond
4K. Part of this work was done while Minguk Kang was an
intern at Adobe Research. Minguk Kang and Jaesik Park
were supported by IITP grant funded by the government of
South Korea (MSIT) (POSTECH GSAI: 2019-0-01906 and
Image restoration: 2021-0-00537).

References
[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Im-

age2stylegan: How to embed images into the stylegan la-
tent space? In IEEE International Conference on Computer
Vision (ICCV), 2019. 5

[2] Saeed Anwar and Nick Barnes. Densely residual laplacian
super-resolution. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 2020. 5

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein Generative Adversarial Networks. In Interna-
tional Conference on Machine Learning (ICML), 2017. 7

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. In International Conference on Learning Repre-
sentations (ICLR), 2015. 7

[5] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-
image diffusion models with an ensemble of expert denois-
ers. arXiv preprint arXiv:2211.01324, 2022. 11, 12

[6] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
Scale GAN Training for High Fidelity Natural Image Syn-
thesis. In International Conference on Learning Represen-
tations (ICLR), 2019. 1, 5, 6, 7, 18, 22

13

[7] Andrew Brock, Theodore Lim, James M. Ritchie, and Nick
Weston. Neural Photo Editing with Introspective Adver-
sarial Networks. In International Conference on Learning
Representations (ICLR), 2017. 5

[8] Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun
Lee, Woonhyuk Baek, and Saehoon Kim. COYO-700M:
Image-Text Pair Dataset. https://github.com/
kakaobrain/coyo-dataset, 2022. 5, 9, 18

[9] Lucy Chai, Michael Gharbi, Eli Shechtman, Phillip Isola,
and Richard Zhang. Any-resolution training for high-
resolution image synthesis. In European Conference on
Computer Vision (ECCV), 2022. 12, 13

[10] Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot,
Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Murphy,
William T Freeman, Michael Rubinstein, et al. Muse: Text-
to-image generation via masked generative transformers.
arXiv preprint arXiv:2301.00704, 2023. 11, 12

[11] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and
William T Freeman. Maskgit: Masked generative image
transformer. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11315–11325, 2022.
18

[12] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In International Conference on Ma-
chine Learning (ICML). PMLR, 2020. 5

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2009. 6, 18

[14] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep
generative image models using a laplacian pyramid of ad-
versarial networks. Conference on Neural Information Pro-
cessing Systems (NeurIPS), 28, 2015. 1

[15] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In Conference on Neural
Information Processing Systems (NeurIPS), 2021. 5, 7, 18,
20, 21, 22

[16] Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng,
Chang Zhou, Da Yin, Junyang Lin, Xu Zou, Zhou Shao,
Hongxia Yang, et al. Cogview: Mastering text-to-image
generation via transformers. In Conference on Neural In-
formation Processing Systems (NeurIPS), 2021. 5

[17] Ming Ding, Wendi Zheng, Wenyi Hong, and Jie
Tang. Cogview2: Faster and better text-to-image gen-
eration via hierarchical transformers. arXiv preprint
arXiv:2204.14217, 2022. 5

[18] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Image super-resolution using deep convolutional net-
works. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI), 2015. 5

[19] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 12873–12883, 2021. 18

[20] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin,
Devi Parikh, and Yaniv Taigman. Make-A-Scene: Scene-
Based Text-to-Image Generation with Human Priors. In Eu-
ropean Conference on Computer Vision (ECCV), 2022. 5

[21] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative Adversarial Nets. In
Conference on Neural Information Processing Systems
(NeurIPS), pages 2672–2680, 2014. 1, 5, 8

[22] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. In Conference on Neural Information
Processing Systems (NeurIPS), 2017. 7

[23] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks.
In International Conference on Learning Representations
(ICLR), 2017. 7

[24] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le
Bras, and Yejin Choi. Clipscore: A reference-free
evaluation metric for image captioning. arXiv preprint
arXiv:2104.08718, 2021. 9, 11, 18

[25] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs Trained by
a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium. In Conference on Neural Information Pro-
cessing Systems (NeurIPS), pages 6626–6637, 2017. 9, 18

[26] Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising Diffusion
Probabilistic Models. In Conference on Neural Information
Processing Systems (NeurIPS), 2020. 5

[27] Jonathan Ho, Chitwan Saharia, William Chan, David J.
Fleet, Mohammad Norouzi, and Tim Salimans. Cas-
caded Diffusion Models for High Fidelity Image Genera-
tion. Journal of Machine Learning Research, pages 47:1–
47:33, 2022. 7, 18

[28] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In Conference on Neural Information Processing
Systems (NeurIPS) Workshop, 2022. 22

[29] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.
Multimodal unsupervised image-to-image translation. In
European Conference on Computer Vision (ECCV), 2018.
5

[30] Drew A Hudson and Larry Zitnick. Generative adversar-
ial transformers. In International Conference on Machine
Learning (ICML), 2021. 7

[31] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and
Sylvain Paris. GANSpace: Discovering Interpretable GAN
Controls. In Conference on Neural Information Processing
Systems (NeurIPS), 2020. 5

[32] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade
Gordon, Nicholas Carlini, Rohan Taori, Achal Dave,
Vaishaal Shankar, Hongseok Namkoong, John Miller, Han-
naneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. Open-
clip. https://doi.org/10.5281/zenodo.5143773, 2021. 9

[33] intao Wang and Liangbin Xie and Chao Dong and Ying
Shan. Real-esrgan: Training real-world blind super-
resolution with pure synthetic data. In IEEE International
Conference on Computer Vision (ICCV) Workshop, 2021.
3, 4, 12, 34, 35, 36

[34] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 5

14

https://github.com/kakaobrain/coyo-dataset
https://github.com/kakaobrain/coyo-dataset

[35] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V
Gool. Dynamic filter networks. Conference on Neural In-
formation Processing Systems (NeurIPS), 29, 2016. 7

[36] Minguk Kang, Woohyeon Shim, Minsu Cho, and Jaesik
Park. Rebooting ACGAN: Auxiliary Classifier GANs with
Stable Training. In Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2021. 5

[37] Minguk Kang, Joonghyuk Shin, and Jaesik Park. Studio-
GAN: A Taxonomy and Benchmark of GANs for Image
Synthesis. arXiv preprint arXiv:2206.09479, 2022. 9, 18

[38] Animesh Karnewar and Oliver Wang. Msg-gan: Multi-
scale gradients for generative adversarial networks. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7799–7808, 2020. 7, 8

[39] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehti-
nen. Progressive growing of gans for improved quality, sta-
bility, and variation. In International Conference on Learn-
ing Representations (ICLR), 2018. 5, 6, 7, 8

[40] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-free
generative adversarial networks. In Conference on Neural
Information Processing Systems (NeurIPS), 2021. 5

[41] Tero Karras, Samuli Laine, and Timo Aila. A style-
based generator architecture for generative adversarial net-
works. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4401–4410, 2019. 1, 5, 6,
18, 22

[42] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
8110–8119, 2020. 1, 5, 6, 7, 8

[43] Hyunjik Kim, George Papamakarios, and Andriy Mnih.
The lipschitz constant of self-attention. In International
Conference on Machine Learning (ICML), 2021. 7

[44] Nupur Kumari, Richard Zhang, Eli Shechtman, and Jun-
Yan Zhu. Ensembling off-the-shelf models for gan train-
ing. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 5, 7, 9

[45] Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo
Aila, and Jaakko Lehtinen. The Role of ImageNet
Classes in Fr\’echet Inception Distance. arXiv preprint
arXiv:2203.06026, 2022. 18

[46] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko
Lehtinen, and Timo Aila. Improved Precision and Recall
Metric for Assessing Generative Models. In Conference on
Neural Information Processing Systems (NeurIPS), 2019.
18

[47] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Ca-
ballero, Andrew Cunningham, Alejandro Acosta, Andrew
Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al.
Photo-realistic single image super-resolution using a gen-
erative adversarial network. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017. 5

[48] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and
Wook-Shin Han. Autoregressive Image Generation using
Residual Quantization. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 11523–
11532, 2022. 18

[49] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh
Singh, and Ming-Hsuan Yang. Diverse image-to-image
translation via disentangled representations. In European
Conference on Computer Vision (ECCV), 2018. 5

[50] Kwonjoon Lee, Huiwen Chang, Lu Jiang, Han Zhang,
Zhuowen Tu, and Ce Liu. ViTGAN: Training GANs with
vision transformers. In International Conference on Learn-
ing Representations (ICLR), 2022. 7

[51] Muyang Li, Ji Lin, Chenlin Meng, Stefano Ermon, Song
Han, and Jun-Yan Zhu. Efficient spatially sparse infer-
ence for conditional gans and diffusion models. In Confer-
ence on Neural Information Processing Systems (NeurIPS),
2022. 5

[52] Jiadong Liang, Wenjie Pei, and Feng Lu. Cpgan: Content-
parsing generative adversarial networks for text-to-image
synthesis. In European Conference on Computer Vision
(ECCV), 2020. 5

[53] Ji Lin, Richard Zhang, Frieder Ganz, Song Han, and Jun-
Yan Zhu. Anycost gans for interactive image synthesis and
editing. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 14986–14996, 2021. 7

[54] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects
in context. In European Conference on Computer Vision
(ECCV), 2014. 5, 12, 18

[55] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo
Numerical Methods for Diffusion Models on Manifolds.
In International Conference on Learning Representations
(ICLR), 2022. 28, 29, 30, 31, 32, 33

[56] Ilya Loshchilov and Frank Hutter. Decoupled Weight De-
cay Regularization. In International Conference on Learn-
ing Representations (ICLR), 2019. 19

[57] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffu-
sion probabilistic model sampling in around 10 steps. arXiv
preprint arXiv:2206.00927, 2022. 5

[58] Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba, and
Ruslan Salakhutdinov. Generating Images from Captions
with Attention. In International Conference on Learning
Representations (ICLR), 2016. 5, 7

[59] Chenlin Meng, Ruiqi Gao, Diederik P Kingma, Stefano Er-
mon, Jonathan Ho, and Tim Salimans. On distillation of
guided diffusion models. In Conference on Neural Infor-
mation Processing Systems (NeurIPS) Workshop, 2022. 5,
9, 12

[60] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge? In
International Conference on Machine Learning (ICML),
2018. 7

[61] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger.
Which Training Methods for GANs do actually Converge?
In International Conference on Machine Learning (ICML),
2018. 19

[62] Takeru Miyato and Masanori Koyama. cGANs with Projec-
tion Discriminator. In International Conference on Learn-
ing Representations (ICLR), 2018. 8, 19

15

[63] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. GLIDE: Towards Photorealistic Image Gen-
eration and Editing with Text-Guided Diffusion Models.
In International Conference on Machine Learning (ICML),
2022. 5, 11, 12

[64] OpenAI. DALL·E API. https://openai.com/
product/dall-e-2, 2022. 28, 29, 30, 31, 32, 33

[65] Taesung Park, Alexei A. Efros, Richard Zhang, and Jun-
Yan Zhu. Contrastive Learning for Unpaired Image-to-
Image Translation. In European Conference on Computer
Vision (ECCV), 2020. 5

[66] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-
Yan Zhu. Semantic image synthesis with spatially-adaptive
normalization. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 5

[67] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On
Aliased Resizing and Surprising Subtleties in GAN Evalu-
ation. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2022. 9, 18

[68] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch:
An Imperative Style, High-Performance Deep Learning Li-
brary. In Conference on Neural Information Processing
Systems (NeurIPS), pages 8024–8035, 2019. 18

[69] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-
Or, and Dani Lischinski. Styleclip: Text-driven manipula-
tion of stylegan imagery. In IEEE International Conference
on Computer Vision (ICCV), 2021. 5

[70] William Peebles and Saining Xie. Scalable Diffusion Mod-
els with Transformers. arXiv preprint arXiv:2212.09748,
2022. 18

[71] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning
(ICML), 2021. 5, 7, 8, 9, 12, 19

[72] Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015. 1, 5

[73] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
and Peter J. Liu. Exploring the Limits of Transfer Learning
with a Unified Text-to-Text Transformer. Journal of Ma-
chine Learning Research, 2020. 5

[74] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey
Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint
arXiv:2204.06125, 2022. 1, 5, 6, 7, 11, 12, 18, 22, 28,
29, 30, 31, 32, 33

[75] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott
Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya

Sutskever. Zero-shot text-to-image generation. In Interna-
tional Conference on Machine Learning (ICML), 2021. 5,
7, 11, 12

[76] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-
geswaran, Bernt Schiele, and Honglak Lee. Generative ad-
versarial text to image synthesis. In International Confer-
ence on Machine Learning (ICML), 2016. 5, 8

[77] Scott E Reed, Zeynep Akata, Santosh Mohan, Samuel
Tenka, Bernt Schiele, and Honglak Lee. Learning what and
where to draw. In Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2016. 5

[78] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. Stable Diffu-
sion. https://github.com/CompVis/stable-
diffusion. Accessed: 2022-11-06. 3, 4, 9, 11, 12, 18,
22, 28, 29, 30, 31, 32, 33, 34, 35, 36

[79] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2022. 1, 5, 7, 9, 11, 12, 13, 18, 20, 21, 22, 28, 29, 30, 31,
32, 33

[80] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic Text-to-Image
Diffusion Models with Deep Language Understanding.
arXiv preprint arXiv:2205.11487, 2022. 1, 5, 6, 7, 9, 11,
12, 18

[81] Chitwan Saharia, Jonathan Ho, William Chan, Tim Sal-
imans, David J Fleet, and Mohammad Norouzi. Image
super-resolution via iterative refinement. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
(TPAMI), 2022. 12, 13, 18

[82] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, Xi Chen, and Xi Chen. Improved
Techniques for Training GANs. In Conference on Neural
Information Processing Systems (NeurIPS), pages 2234–
2242, 2016. 18

[83] Tim Salimans and Jonathan Ho. Progressive distillation for
fast sampling of diffusion models. In International Confer-
ence on Learning Representations (ICLR), 2022. 5

[84] Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas
Geiger. Projected GANs Converge Faster. In Conference on
Neural Information Processing Systems (NeurIPS), 2021.
5, 9

[85] Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger,
and Timo Aila. StyleGAN-T: Unlocking the Power of
GANs for Fast Large-Scale Text-to-Image Synthesis. arXiv
preprint arXiv:2301.09515, 2023. 5

[86] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-
xl: Scaling stylegan to large diverse datasets. In ACM SIG-
GRAPH 2022 Conference Proceedings, pages 1–10, 2022.
5, 7, 18, 20, 21

[87] Christoph Schuhmann. CLIP+MLP Aesthetic
Score Predictor. https : / / github . com /
christophschuhmann/improved- aesthetic-
predictor. 9, 18

16

https://openai.com/product/dall-e-2
https://openai.com/product/dall-e-2
https://github.com/CompVis/stable-diffusion
https://github.com/CompVis/stable-diffusion
https://github.com/christophschuhmann/improved-aesthetic-predictor
https://github.com/christophschuhmann/improved-aesthetic-predictor
https://github.com/christophschuhmann/improved-aesthetic-predictor

[88] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. LAION-5B: An open large-scale dataset for
training next generation image-text models. arXiv preprint
arXiv:2210.08402, 2022. 1, 5, 9, 18

[89] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing Diffusion Implicit Models. In International Conference
on Learning Representations (ICLR), 2021. 5

[90] Diana Sungatullina, Egor Zakharov, Dmitry Ulyanov, and
Victor Lempitsky. Image manipulation with perceptual dis-
criminators. In European Conference on Computer Vision
(ECCV), 2018. 9

[91] Md Mehrab Tanjim. DynamicRec: a dynamic convolu-
tional network for next item recommendation. In Proceed-
ings of the 29th ACM International Conference on Informa-
tion and Knowledge Management (CIKM), 2020. 7

[92] Ming Tao, Bing-Kun Bao, Hao Tang, and Changsheng Xu.
GALIP: Generative Adversarial CLIPs for Text-to-Image
Synthesis. arXiv preprint arXiv:2301.12959, 2023. 5

[93] Ming Tao, Hao Tang, Fei Wu, Xiao-Yuan Jing, Bing-Kun
Bao, and Changsheng Xu. DF-GAN: A Simple and Effec-
tive Baseline for Text-to-Image Synthesis. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2022. 5

[94] Ken Turkowski. Filters for common resampling tasks.
Graphics gems, pages 147–165, 1990. 18

[95] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
European Conference on Computer Vision (ECCV) Work-
shop, 2018. 5

[96] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Be-
longie, and P. Perona. Caltech-UCSD Birds 200. Technical
report, California Institute of Technology, 2010. 5

[97] Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and
Michael Auli. Pay Less Attention with Lightweight and Dy-
namic Convolutions. In International Conference on Learn-
ing Representations (ICLR), 2018. 7

[98] Jonas Wulff and Antonio Torralba. Improving inversion and
generation diversity in stylegan using a gaussianized latent
space. arXiv preprint arXiv:2009.06529, 2020. 5

[99] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang,
Zhe Gan, Xiaolei Huang, and Xiaodong He. Attngan: Fine-
grained text to image generation with attentional generative
adversarial networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018. 5

[100] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas
Funkhouser, and Jianxiong Xiao. Lsun: Construction of a
large-scale image dataset using deep learning with humans
in the loop. arXiv preprint arXiv:1506.03365, 2015. 6

[101] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong,
Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku,
Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autore-

gressive models for content-rich text-to-image generation.
arXiv preprint arXiv:2206.10789, 2022. 1, 5, 9, 11, 12

[102] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Au-
gustus Odena. Self-Attention Generative Adversarial Net-
works. In International Conference on Machine Learning
(ICML), pages 7354–7363, 2019. 5

[103] Han Zhang, Jing Yu Koh, Jason Baldridge, Honglak Lee,
and Yinfei Yang. Cross-Modal Contrastive Learning for
Text-to-Image Generation. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021. 5

[104] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xi-
aogang Wang, Xiaolei Huang, and Dimitris N Metaxas.
Stackgan: Text to photo-realistic image synthesis with
stacked generative adversarial networks. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2017. 1, 5,
8

[105] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. 9,
12, 13, 19

[106] Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao
Liang, Eric I Chang, and Yan Xu. Large Scale Image
Completion via Co-Modulated Generative Adversarial Net-
works. In International Conference on Learning Represen-
tations (ICLR), 2021. 9

[107] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song
Han. Differentiable augmentation for data-efficient gan
training. arXiv preprint arXiv 2006.10738, 2020. 5

[108] Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li,
Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui Xu, and
Tong Sun. Lafite: Towards language-free training for text-
to-image generation. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2022. 11, 12

[109] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and
Alexei A Efros. Generative visual manipulation on the nat-
ural image manifold. In European Conference on Computer
Vision (ECCV), 2016. 5

[110] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In IEEE International
Conference on Computer Vision (ICCV), pages 2223–2232,
2017. 5

[111] Minfeng Zhu, Pingbo Pan, Wei Chen, and Yi Yang. Dm-
gan: Dynamic memory generative adversarial networks for
text-to-image synthesis. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019. 5

[112] Peihao Zhu, Rameen Abdal, Yipeng Qin, John Femiani, and
Peter Wonka. Improved stylegan embedding: Where are the
good latents? arXiv preprint arXiv:2012.09036, 2020. 5

[113] Xiaojin Zhu, Andrew B Goldberg, Mohamed Eldawy,
Charles R Dyer, and Bradley Strock. A text-to-picture syn-
thesis system for augmenting communication. In The AAAI
Conference on Artificial Intelligence, 2007. 5

17

Appendices
We first provide training and evaluation details in Ap-

pendix A. Then, we share results on ImageNet, with visual
comparison to existing methods in Appendix B. Lastly in
Appendix C, we show more visuals on our text-to-image
synthesis results and compare them with LDM [79], Stable
Diffusion [78], and DALL·E 2 [74].

A. Training and evaluation details

A.1. Text-to-image synthesis
We train GigaGAN on a combined dataset of LAION2B-

en [88] and COYO-700M [8] in PyTorch framework [68].
For training, we apply center cropping, which results in
a square image whose length is the same as the shorter
side of the original image. Then, we resize the image
to the resolution 64 × 64 using PIL.LANCZOS [94] re-
sizer, which supports anti-aliasing [67]. We filter the train-
ing image–text pairs based on image resolution (≥ 512),
CLIP score (> 0.3) [24], aesthetics score (> 5.0) [87],
and remove watermarked images. We train our GigaGAN
based on the configurations denoted in the fourth and fifth
columns of Table A2.

For evaluation, we use 40,504 and 30,000 real and gen-
erated images from COCO2014 [54] validation dataset as
described in Imagen [80]. We apply the center cropping
and resize the real and generated images to 299× 299 reso-
lution using PIL.BICUBIC, suggested by clean-fid [67]. We
use the clean-fid library [67] for FID calculation.

A.2. Conditional image synthesis on ImageNet
We follow the training and evaluation protocol proposed

by Kang et al. [37] to make a fair comparison against other
cutting-edge generative models. We use the same crop-
ping strategy to process images for training and evalua-
tion as in our text-to-image experiments. Then, we re-
size the image to the target resolution (64 × 64 for the
base generator or 256× 256 for the super-resolution stack)
using PIL.LANCZOS [94] resizer, which supports anti-
aliasing [67]. Using the pre-processed training images, we
train GigaGAN based on the configurations denoted in the
second and third columns of Table A2.

For evaluation, we upsample the real and generated im-
ages to 299 × 299 resolution using the PIL.BICUBIC re-
sizer. To compute FID, we generate 50k images without
truncation tricks [6, 41] and compare those images with the
entire training dataset. We use the pre-calculated features of
real images provided by StudioGAN [37] and 50k generated
images for Precision & Recall [46] calculation.

A.3. Super-resolution results
For model training, we preprocess ImageNet in the same

way as in Section A.2 and use the configuration in the last

column of Table A2. To compare our model with SR3 [81]
and LDM fairly, we follow the evaluation procedure de-
scribed in SR3 and LDM papers.

B. ImageNet experiments

B.1. Qualitative results

We train a class-conditional GAN on the ImageNet
dataset [13], for which apples-to-apples comparison is pos-
sible using the same dataset and evaluation pipeline. Our
GAN achieves comparable generation quality to the cutting-
edge generative models without a pretrained ImageNet clas-
sifier, which acts favorably toward automated metrics [45].
We apply L2 self-attention, style-adaptive convolution ker-
nel, and matching-aware loss to our model and use a wider
synthesis network to train the base 64px model with a
batch size of 1024. Additionally, we train a separate 256px
class-conditional upsampler model and combine them with
an end-to-end finetuning stage. Table A1 shows that our
method generates high-fidelity images.

Table A1. Class-conditional synthesis on ImageNet 256px. Our
method performs competitively against large diffusion and trans-
former models. Shaded methods leverage a pretrained ImageNet
classifier at training or inference time, which could act favor-
ably toward the automated metrics [45]. † indicates IS [82] and
FID [25] are borrowed from the original DiT paper [70].

Model IS [82] FID [25] Precision/Recall [46] Size

G
A

N BigGAN-Deep [6] 224.46 6.95 0.89/0.38 112M
StyleGAN-XL [86] 297.62 2.32 0.82/0.61 166M

D
iff

us
io

n

ADM-G [15] 207.86 4.48 0.84/0.62 608M
ADM-G-U [15] 240.24 4.01 0.85/0.62 726M
CDM [27] 158.71 4.88 - / - -
LDM-8-G [79] 209.52 7.76 - / - 506M
LDM-4-G [79] 247.67 3.60 - / - 400M
DiT-XL/2† [70] 278.24 2.27 - / - 675M

xf
or

m
er Mask-GIT [11] 216.38 5.40 0.87/0.60 227M

VQ-GAN [19] 314.61 5.20 0.81/0.57 1.4B
RQ-Transformer [48] 339.41 3.83 0.85/0.60 3.8B

GigaGAN 225.52 3.45 0.84/0.61 569M

B.2. Quantitative results

We provide visual results from ADM-G-U, LDM,
StyleGAN-XL [86], and GigaGAN in Figures A1 and A2.
Although StyleGAN-XL has the lowest FID, its visual qual-
ity appears worse than ADM and GigaGAN. StyleGAN-XL
struggles to synthesize the overall image structure, leading
to less realistic images. In contrast, GigaGAN appears to
synthesize the overall structure better than StyleGAN-XL
and faithfully captures fine-grained details, such as the wing
patterns of a monarch and the white fur of an arctic fox.
Compared to GigaGAN, ADM-G-U synthesizes the image
structure more rationally but lacks in reflecting the afore-
mentioned fine-grained details.

18

Table A2. Hyperparameters for GigaGAN training. We denote Projection Discriminator [62] as PD, R1 regularization [61] as R1,
Learned Perceptual Image Patch Similarity [105] as LPIPS, Adam with decoupled weight decay [56] as AdamW, and the pretrained VIT-
B/32 visual encoder [71] as CLIP-ViT-B/32-V.

Task Class-Label-to-Image Text-to-Image Super-Resolution

Dataset & Resolution ImageNet 64 ImageNet 64→256 LAION&COYO 64 LAION&COYO 64→512 ImageNet 64→256

z dimension 64 128 128 128 128
w dimension 512 512 1024 512 512
Adversarial loss type Logistic Logistic Logistic Logistic Logistic
Conditioning loss type PD PD MS-I/O MS-I/O -
R1 strength 0.2048 0.2048 0.2048 ∼ 2.048 0.2048 0.2048
R1 interval 16 16 16 16 16
G Matching loss strength - - 1.0 1.0 -
D Matching loss strength - - 1.0 1.0 -
LPIPS strength - 100.0 - 10.0 100.0
CLIP loss strength - - 0.2 ∼ 1.0 1.0 -
Optimizer AdamW AdamW AdamW AdamW AdamW
Batch size 1024 256 512∼1024 192∼320 256
G learning rate 0.0025 0.0025 0.0025 0.0025 0.0025
D learning rate 0.0025 0.0025 0.0025 0.0025 0.0025
β1 for AdamW 0.0 0.0 0.0 0.0 0.0
β2 for AdamW 0.99 0.99 0.99 0.99 0.99
Weight decay strength 0.00001 0.00001 0.00001 0.00001 0.00001
Weight decay strength on attention - - 0.01 0.01 -
D updates per G update 1 1 1 1 1
G ema beta 0.9651 0.9912 0.9999 0.9890 0.9912
Precision TF32 TF32 TF32 TF32 TF32
Mapping Network M layer depth 2 4 4 4 4
Text Transformer T layer depth - - 4 2 -
G channel base 32768 32768 16384 32768 32768
D channel base 32768 32768 16384 32768 32768
G channel max 512 512 1600 512 512
D channel max 768 512 1536 512 512
G # of filters N for adaptive kernel selection 8 4 [1, 1, 2, 4, 8] [1, 1, 1, 1, 1, 2, 4, 8, 16, 16, 16, 16] 4
Attention type self self self + cross self + cross self
G attention resolutions [8, 16, 32] [16, 32] [8, 16, 32] [8, 16, 32, 64] [16, 32]
D attention resolutions [8, 16, 32] - [8, 16, 32] [8, 16] -
G attention depth [4, 4, 4] [4, 2] [2, 2, 1] [2, 2, 2, 1] [4, 2]
D attention depth [1, 1, 1] - [2, 2, 1] [2, 2] -
Attention dimension multiplier 1.0 1.4 1.0 1.0 1.4
MLP dimension multiplier of attention 4.0 4.0 4.0 4.0 4.0
synthesis block per resolution 1 5 [3, 3, 3, 2, 2] [4, 4, 4, 4, 4, 4, 3] 5
discriminator block per resolution 1 1 [1, 2, 2, 2, 2] 1 -
Residual gain 1.0 0.4 0.4 0.4 0.4
Residual gain on attention 1.0 0.3 0.3 0.5 0.3
MinibatchStdLayer True True False True True
D epilogue mbstd group size 8 4 - 2 4
Multi-scale training False False True True False
Multi-scale loss ratio (high to low res) - - [0.33, 0.17, 0.17, 0.17, 0.17] -
D intermediate layer adv loss weight - - 0.01 [0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] -
D intermediate layer matching loss weight - - 0.05 - -
Vision-aided discriminator backbone - - CLIP-ViT-B/32-V - -

G Model size 209.5M 359.8M 652.5M 359.1M 359.0M
D Model size 76.7M 30.7M 381.4M 130.1M 28.9M
Iterations 300k 620k 1350k 915k 160k
A100 GPUs for training 64 64 96∼128 64 32

19

Figure A1. Uncurated images (above: Tench and below: Monarch) from ADM-G-U [15], LDM-4-G [79], GigaGAN (ours), and StyleGAN-
XL [86]. FID values of each generative model are 4.01, 3.60, 3.45, and 2.32, respectively.

20

Figure A2. Uncurated images (above: Lorikeet and below: Arctic fox) from ADM-G-U [15], LDM-4-G [79], GigaGAN (ours), and
StyleGAN-XL [86]. FID values of each generative model are 4.01, 3.60, 3.45, and 2.32, respectively.

21

C. Text-to-image synthesis results

C.1. Truncation trick at inference

Similar to the classifier guidance [15] and classifier-free
guidance [28] used in diffusion models such as LDM, our
GAN model can leverage the truncation trick [6, 41] at in-
ference time.

wtrunc = lerp(wmean,w, ψ), (9)

where wmean is the mean of w of the entire dataset, which
can be precomputed. In essence, the truncation trick lets us
trade diversity for fidelity by interpolating the latent vector
to the mean of the distribution and thereby making the out-
puts more typical. When ψ = 1.0, wmean is not used, and
there is no truncation. When ψ = 0.0, w collapses to the
mean, losing diversity.

While it is straightforward to apply the truncation trick
for the unconditional case, it is less clear how to achieve this
for text-conditional image generation. We find that interpo-
lating the latent vector toward both the mean of the entire
distribution as well as the mean of w conditioned on the
text prompt produces desirable results.

wtrunc = lerp(wmean,c, lerp(wmean,w, ψ), ψ), (10)

where wmean,c can be computed at inference time by sam-
pling w = M(z, c) 16 times with the same c, and tak-
ing the average. This operation’s overhead is negligible,
as the mapping network M is computationally light com-
pared to the synthesis network. At ψ = 1.0, wtrunc becomes
wtrunc = w, meaning no truncation. Figure A4 demon-
strates the effect of our text-conditioned truncation trick.

Quantitatively, the effect of truncation is similar to the
guidance technique of diffusion models. As shown in Fig-
ure A3, the CLIP score increases with more truncation,
where the FID increases due to reduced diversity.

C.2. Comparison to diffusion models

Finally, we show randomly sampled results of our model
and compare them with publicly available diffusion models,
LDM [79], Stable Diffusion [78], and DALL·E 2 [74].

 0.22 0.24 0.26 0.28 0.30 0.32 0.34
CLIP score (ViT-G/14)

10

15

20

25

30

35

40

45

CO
CO

 ze
ro

-s
ho

t F
ID

 1
0k

LDM

Stable Diffusion v1.5
Ours

Figure A3. We investigate how our FID and CLIP score changes
over different truncation values [1.0, 0.9, 0.8, 0.7, 0.6, 0.5], by vi-
sualizing them along with the FID-CLIP score curve of two pub-
licly available large scale diffusion models: LDM and Stable Dif-
fusion. It is seen that the CLIP score increases with more trunca-
tion, at the cost of reduced diversity indicated by higher FID. The
guidance values of the diffusion models are [1.0, 1.25, 1.5, 1.75,
2, 4, 6, 8, 10].

22

no truncation strong truncation

𝜓 = 1.0 0.9 0.7 0.5 0.3 0.1

Figure A4. The visual effect of our truncation trick. We demonstrate the effect of truncation by decreasing the truncation value ψ from
1.0. We show six example outputs with the text prompt “digital painting of a confident and severe looking northern war goddess, extremely
long blond braided hair, beautiful blue eyes and red lips.” and “Magritte painting of a clock on a beach.”. At 1.0 (no truncation), the
diversity is high, but the alignment is not satisfactory. As the truncation increases, text-image alignment improves, at the cost of diversity.
We find that a truncation value between 0.8 and 0.7 produces the best result.

23

“A modern
style house,
DSLR.”

Coarse styles

Fi
ne

 s
ty

le
s

Coarse styles

“A male
Headshot
Picture.”

Fi
ne

 s
ty

le
s

Figure A5. Style mixing. GigaGAN maintains a disentangled latent space, allowing us to blend the coarse style of one sample with the
fine style of another. The corresponding latent codes are spliced together to produce a style-swapping grid. The outputs are generated from
the same prompt but with different latent codes.

24

“.. in a
sunny day”

“.. in sunset”

“A modern mansion ..” “A victorian mansion ..”

“Roses.” “Sunflowers.”

“oil painting”

“photograph”

Figure A6. Prompt interpolation. GigaGAN enables smooth interpolation between prompts, as shown in the interpolation grid. The
four corners are generated from the same latent but with different text prompts. The corresponding text embeddings and style vectors
are interpolated to create a smooth transition. The same results in similar layouts.

25

“Photography” “Pixel art” “pencil drawing”
“Claude Monet
painting”

“Van Gogh
painting”

Figure A7. Prompt mixing. GigaGAN can directly control the style with text prompts. Here we generate five outputs using the
prompts “Photography of X”, shown in the “Photography” column. Then we re-compute the text embeddings t and the style codes w
using the new prompts “Y of X”, such as “Van Gogh painting of the black hole in the space”, and apply them to the second half layers
of the generator, achieving layout-preserving style control. Cross-attention mechanism automatically localizes the style to the object
of interest. We use the following prompts in order from the row above. (1) the black hole in the space. (2) a teacup on the desk. (3)
a table top with a vase of flowers on it. (4) a birthday cake. (5) a beautiful flower. We discover that GigaGAN’s prompt-based style
transfer is only possible for images of a single and simple object.

26

Figure A8. Diversity of synthesized images using GigaGAN. GigaGAN can synthesize diverse images for a given prompt. We use
the following prompts in order from the row above. (1) Majestic castle and fireworks, art work, oil painting, 2k. (2) Oil-painting
depicting a sunset over the sea with waves. (3) A burning candle with tho wicks, detailed photo, studio lighting. (4) Portrait of Isaac
Newton, long hair. (5) An abstract representation of the speed of light.

27

DALL·E 2 (1024px)

Ours (512px, 0.13s / img)

Ours (512px, 0.14s / img, truncation 𝜓 = 0.8)

Stable Diffusion v1.5 (512px, 2.9s / img, 50 steps, guidance=7.5)

LDM (256px, 9.4s / img, 250 steps, guidance=6.0)

“A loft bed with a dresser underneath it.”

Figure A9. Random outputs of our model, Latent Diffusion Model [79], Stable Diffusion [78], and DALL·E 2 [74], using prompt “A loft
bed with a dresser underneath it”. We show two versions of our model, one without truncation and the other with truncation. Our model
enjoys faster speed than the diffusion models. Still, we observe our model falls behind in structural coherency, such as the number of legs
of the bed frames. For LDM and Stable Diffusion, we use 250 and 50 sampling steps with DDIM / PLMS [55], respectively. For DALL·E
2, we generate images using the official DALL·E service [64].

28

DALL·E 2 (1024px)

Ours (512px, 0.13s / img)

Ours (512px, 0.14s / img, truncation 𝜓 = 0.8)

Stable Diffusion v1.5 (512px, 2.9s / img, 50 steps, guidance=7.5)

LDM (256px, 9.4s / img, 250 steps, guidance=6.0)

“A green vase filed with red roses sitting on top of table.”

Figure A10. Random outputs of our model, Latent Diffusion Model [79], Stable Diffusion [78], and DALL·E 2 [74], using prompt “A
green vase filed with red roses sitting on top of table”. We show two versions of our model, one without truncation and the other with
truncation. Our model enjoys faster speed than the diffusion models in both cases. Still, we observe our model falls behind in structural
coherency like the symmetry of the vases. For LDM and Stable Diffusion, we use 250 and 50 sampling steps with DDIM / PLMS [55],
respectively. For DALL·E 2, we generate images using the official DALL·E service [64].

29

DALL·E 2 (1024px)

Ours (512px, 0.13s / img)

Ours (512px, 0.14s / img, truncation 𝜓 = 0.8)

Stable Diffusion v1.5 (512px, 2.9s / img, 50 steps, guidance=7.5)

LDM (256px, 9.4s / img, 250 steps, guidance=6.0)

“A zebra in the grass who is cleaning himself.”

Figure A11. Random outputs of our model, Latent Diffusion Model [79], Stable Diffusion [78], and DALL·E 2 [74], using prompt “A
zebra in the grass who is cleaning himself”. We show two versions of our model, one without truncation and the other with truncation. Our
model enjoys faster speed than the diffusion models in both cases. Still, we observe our model falls behind in details, such as the precise
stripe pattern of the positioning of eyes. For LDM and Stable Diffusion, we use 250 and 50 sampling steps with DDIM / PLMS [55],
respectively. For DALL·E 2, we generate images using the official DALL·E service [64].

30

DALL·E 2 (1024px)

Ours (512px, 0.13s / img)

Ours (512px, 0.14s / img, truncation 𝜓 = 0.8)

Stable Diffusion v1.5 (512px, 2.9s / img, 50 steps, guidance=7.5)

LDM (256px, 9.4s / img, 250 steps, guidance=6.0)

“A teddy bear on a skateboard in times square.”

Figure A12. Random outputs of our model, Latent Diffusion Model [79], Stable Diffusion [78], and DALL·E 2 [74], using prompt “A
teddy bear on a skateboard in times square”. We show two versions of our model, one without truncation and the other with truncation. Our
model enjoys faster speed than the diffusion models in both cases. Still, we observe our model falls behind in details, like the exact shape
of skateboards. For LDM and Stable Diffusion, we use 250 and 50 sampling steps with DDIM / PLMS [55], respectively. For DALL·E 2,
we generate images using the official DALL·E service [64].

31

DALL·E 2 (1024px)

Ours (512px, 0.13s / img)

Ours (512px, 0.14s / img, truncation 𝜓 = 0.8)

Stable Diffusion v1.5 (512px, 2.9s / img, 50 steps, guidance=7.5)

LDM (256px, 9.4s / img, 250 steps, guidance=6.0)

“Vibrant portrait painting of Salvador Dalí with a robotic half face.”

Figure A13. Random outputs of our model, Latent Diffusion Model [79], Stable Diffusion [78], and DALL·E 2 [74], using prompt “Vibrant
portrait painting of Salvador Dalı́ with a robotic half face”. We show two versions of our model, one without truncation and the other with
truncation. Our model enjoys faster speed than the diffusion models in both cases. Still, we observe our model falls behind in structural
details like in the detailed shape of eyes. For LDM and Stable Diffusion, we use 250 and 50 sampling steps with DDIM / PLMS [55],
respectively. For DALL·E 2, we generate images using the official DALL·E service [64].

32

DALL·E 2 (1024px)

Ours (512px, 0.13s / img)

Ours (512px, 0.14s / img, truncation 𝜓 = 0.8)

Stable Diffusion v1.5 (512px, 2.9s / img, 50 steps, guidance=7.5)

LDM (256px, 9.4s / img, 250 steps, guidance=6.0)

“Three men in military suits are sitting on a bench.”

Figure A14. Random outputs of our model, Latent Diffusion Model [79], Stable Diffusion [78], and DALL·E 2 [74], using prompt “Three
men in military suits are sitting on a bench”. We show two versions of our model, one without truncation and the other with truncation. Our
model enjoys faster speed than the diffusion models in both cases. Still, we observe our model falls behind in details in facial expression
and attire. For LDM and Stable Diffusion, we use 250 and 50 sampling steps with DDIM / PLMS [55], respectively. For DALL·E 2, we
generate images using the official DALL·E service [64].

33

Input
Input artwork from AdobeStock (128px) GigaGAN Upsampler (1024px, 0.13s)Real-ESRGAN (1024px, 0.06s) SD Upscaler (1024px, 7.75s)

SD Upscaler (1K)

GigaGAN Up (1K)

GigaGAN Up (4K)

Real-ESRGAN (1K)

GigaGAN Upsampler (4096px, 16Mpix, 3.66s)

Figure A15. Our GAN-based upsampler can serve as the upsampler for many text-to-image models that generate initial outputs at low
resolutions like 64px or 128px. We simulate such usage by applying our 8× superresolution model on a low-res 128px artwork to obtain
the 1K output, using “Portrait of a kitten dressed in a bow tie. Red Rose. Valentine’s day.”. Then our model can be re-applied to go beyond
4K. We compare our model with the text-conditioned upscaler of Stable Diffusion [78] and unconditional Real-ESRGAN [33]. Zooming
in is recommended for comparison between 1K and 4K outputs.

34

Input
Input artwork from AdobeStock (128px) GigaGAN Upsampler (1024px, 0.13s)Real-ESRGAN (1024px, 0.06s) SD Upscaler (1024px, 7.75s)

SD Upscaler (1K)

GigaGAN Up (1K)

GigaGAN Up (4K)

Real-ESRGAN (1K)

GigaGAN Upsampler (4096px, 16Mpix, 3.66s)

Figure A16. Our GAN-based upsampler can serve as the upsampler for many text-to-image models that generate initial outputs at low
resolutions like 64px or 128px. We simulate such usage by applying our 8× superresolution model on a low-res 128px artwork to obtain
the 1K output, using “Heart shaped pancakes with honey and strawberry for Valentine’s Day”. Then our model can be re-applied to go
beyond 4K. We compare our model with the text-conditioned upscaler of Stable Diffusion [78] and unconditional Real-ESRGAN [33].
Zooming in is recommended for comparison between 1K and 4K outputs.

35

Input photo (128px) GigaGAN Upsampler (1024px, 0.13s)Real-ESRGAN (1024px, 0.06s) SD Upscaler (1024px, 7.75s)

GigaGAN Upsampler (4096px, 16Mpix, 3.66s)

SD Upscaler (1K)

Input

GigaGAN Up (1K)

GigaGAN Up (4K)

Real-ESRGAN (1K)

Figure A17. Our GAN-based upsampler can also be used as an off-the-shelf superresolution model for real images with a large scaling
factor by providing an appropriate description of the image. We apply our text-conditioned 8× superresolution model on a low-res 128px
photo to obtain the 1K output, using “An elephant spraying water with its trunk”. Then our model can be re-applied to go beyond 4K.
We compare our model with the text-conditioned upscaler of Stable Diffusion [78] and unconditional Real-ESRGAN [33]. Zooming in is
recommended for comparison between 1K and 4K outputs.

36

	. Introduction
	. Related Works
	. Method
	. Modeling complex contextual interaction
	. Generator design
	. Discriminator design
	. GAN-based upsampler

	. Experiments
	. Training and evaluation details
	. Effectiveness of proposed components
	. Text-to-Image synthesis
	. Comparison with distilled diffusion models
	. Super-resolution for large-scale image synthesis
	. Controllable image synthesis

	. Discussion and Limitations
	Appendices
	. Training and evaluation details
	. Text-to-image synthesis
	. Conditional image synthesis on ImageNet
	. Super-resolution results

	. ImageNet experiments
	. Qualitative results
	. Quantitative results

	. Text-to-image synthesis results
	. Truncation trick at inference
	. Comparison to diffusion models

